基于粗糙集的关联规则数据挖掘在层流冷却中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:1005-3026.2007.11.017

基于粗糙集的关联规则数据挖掘在层流冷却中的应用

引用
卷取温度过程控制主要是通过传统数学模型进行描述,而层流冷却过程是一个非常复杂的非线性过程,尤其是对于低温卷取的温度控制,难以用数学模型精确表达.以攀钢热轧板厂层流冷却系统实测数据为基础建立采样数据的决策表,运用粗糙集理论将采样信息表进行模糊语言化,依据适合实际应用的语言数据关联规则支持度和可信度,通过属性约简,剔除冗余规则,挖掘出隐含的关联规则,通过动态的模糊模型的建立,优化传统层流冷却数学模型.实测数据运算表明,该方法可以将原模型的卷取温度控制精度提高1%~2%,具有很好的应用前景.

粗糙集、关联规则、数据挖掘、层流冷却、属性约简

28

TG335.5(金属压力加工)

国家自然科学基金50104004

2008-01-14(万方平台首次上网日期,不代表论文的发表时间)

共4页

1583-1585,1598

相关文献
评论
暂无封面信息
查看本期封面目录

东北大学学报(自然科学版)

1005-3026

21-1344/T

28

2007,28(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn