基于概率神经网络的悬索桥损伤定位研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:1005-3026.2002.05.020

基于概率神经网络的悬索桥损伤定位研究

引用
概率神经网络(下称PNN)以贝叶斯概率方法描述测量数据,因而PNN可以在有噪声情况下进行结构损伤检测.提出了运用传统PNN和自适应PNN进行结构损伤检测的方法与基本原理,并分别用两种PNN模型进行了悬索桥的损伤定位研究,还讨论了测量噪声对识别精度(IA)的影响.研究发现,运用自适应PNN进行损伤定位效果极大地优于传统PNN,且随着噪声程度的增大,IA减少.

概率神经网络、损伤定位、悬索桥、测量噪声、贝叶斯概率、模态参数

23

TU973;P315.69(地下建筑)

建设部科技攻关项目;香港研究资助局资助项目

2004-01-08(万方平台首次上网日期,不代表论文的发表时间)

共4页

480-483

相关文献
评论
暂无封面信息
查看本期封面目录

东北大学学报(自然科学版)

1005-3026

21-1344/T

23

2002,23(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn