注意力空洞卷积无人机遥感多目标检测方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-5867.2023.12.039

注意力空洞卷积无人机遥感多目标检测方法研究

引用
针对无人机遥感影像中多类别目标的检测问题,本文提出一种单阶段的深度学习新目标检测模型.在特征提取结构内,首先使用空洞卷积核来构建基本的提取结构,让模型在提取过程中获取感受野更大、原始信息保留更充分的特征图;针对小目标检测精度不佳问题,采用通道注意力与空间注意力组合的多路注意力机制来提高模型对真实目标的关注程度;在特征图连续上采样的基础上,将来自同层以及高层下采样的特征图进行融合来获取鲁棒性更强、语义信息更充分的特征图实施最终的检测.以VisDrone、DLR-MVDA数据集和路采影像组成数据集,并使用暗通道先验等方法对其进行强化,组成训练数据集对模型进行训练.实验结果表明,本文所提出的模型对于无人机遥感影像中的多种类别的目标均能够实现较好的检出,其平均精度均值较其余3 种基准模型分别提高8.56%、4.58%及 15.81%,检测速度可以达到25 帧/s的水平,说明所提出模型能够针对遥感影像中的多类别目标实施快速精准的检测,同时具有较好的泛化能力.

遥感、无人机、目标检测、深度学习、注意力机制

46

P237(摄影测量学与测绘遥感)

2023-12-26(万方平台首次上网日期,不代表论文的发表时间)

共4页

136-139

相关文献
评论
暂无封面信息
查看本期封面目录

测绘与空间地理信息

1672-5867

23-1520/P

46

2023,46(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn