10.3969/j.issn.1673-1794.2020.02.018
基于机器学习的僵尸物联网检测方法性能评价研究
机器学习方法已被逐渐应用于僵尸物联网的检测过程.然而,由于已有研究工作所用的机器学习方法以及实验用的数据集不同,很难对不同机器学习方法在僵尸物联网检测的性能进行一致性地评价.为解决上述问题,从是否使用特征降维、使用特征降维时所用的特征维度数量、测试和训练样本分布比例等三个方面设计了不同的实验方案,并在公共数据集上综合评价了多种基于机器学习的僵尸物联网检测方法.实验结果表明,在同样的数据集下,基于LDA-Random-Fores的僵尸网络检测算法最好,基于GaussianNB的检测算法性能最差.实验结果为僵尸物联网检测方法研究与应用,选择合适的检测算法,提供了数据支持.
僵尸物联网、机器学习、检测算法
22
TP393.06(计算技术、计算机技术)
安徽省高校自然科学研究一般项目"面向实时居家活动分析的传感器数据动态分段方法研究";安徽省高校自然科学研究重点项目"基于机器人和物联网技术的老人负面情绪识别与干预方法研究";滁州市科技计划项目"基于物联网的老人状态智能监测系统";滁州学院校级项目"基于老年人状态数据的行为预测方法及系统"
2020-07-02(万方平台首次上网日期,不代表论文的发表时间)
共5页
69-73