利用飞秒技术研究电荷转移动力学
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.1016/S1872-2067(23)64438-9

利用飞秒技术研究电荷转移动力学

引用
光催化材料和技术可合理利用太阳能,完成能量转化与存储,并实现环境治理和双碳目标.光催化剂活性是影响其效率的关键,因此光催化剂的合理设计成为研究热点.为抑制光生电子和空穴的快速复合并拓展单一光催化剂的光吸收范围,可通过构建异质结特别是新兴的梯型(S型异质结)的策略.在保有体系最大氧化还原能力的同时,实现光生电荷的有效分离.可通过原位光照X射线光电子能谱和原位光照原子力显微镜等技术研究梯型异质结的电荷转移机制,然而,目前尚缺少对于异质结界面处瞬态动力学的深入研究.近期,中国地质大学(武汉)余家国教授、张留洋教授与湖北文理学院梁桂杰教授合作,通过原位生长策略,在芘基共轭聚合物(PDB)表面原位生长硫化镉(CdS)纳米晶体,制备了一系列硫化镉/聚合物梯型异质结(CPDB),并系统地研究了异质结界面处的稳态电荷分布以及瞬态电荷转移动力学.密度泛函理论计算和开尔文探针测试结果 表明,暗态下电子由PDB向CdS转移,并在界面处形成内建电场和能带弯曲.原位光照X射线光电子能谱表明,在内建电场和能带弯曲的驱动下,CdS的光生电子与PDB的光生空穴复合,而PDB的光生电子与CdS的光生空穴得以保留.利用飞秒瞬态吸收技术揭示了异质结界面处的电荷转移演化过程.通过实验信号的拟合分析,CdS的光生电子有三条衰减路径:晶格间的电子扩散、光生电子空穴对直接复合以及光生电子与捕获态空穴复合.对于CPDB复合物而言,除了上述三种衰减路径,还发现CdS的光生电子与PDB的光生空穴复合路径.作者通过调控CdS/PDB配比,阐述了异质结界面电荷转移过程动力学与其光催化性能的关系.结果表明,随着PDB含量的增加,CdS与PDB之间界面电荷转移寿命越短(速度越快);然而,加入过量PDB会导致聚合物发生聚集,从而抑制界面电荷转移.该结论 与CPDB复合物的光催化性能表现一致.综上,该工作通过使用飞秒瞬态吸收技术,对梯型异质结光催化剂的界面电荷转移过程进行了直接跟踪观测,为揭示光催化过程中的复杂机制提供了新思路.

光催化、飞秒瞬态吸收、梯型异质结、硫化镉、共轭聚合物

49

O437;O69;TN248.11

2023-08-11(万方平台首次上网日期,不代表论文的发表时间)

共3页

5-7

相关文献
评论
暂无封面信息
查看本期封面目录

催化学报

0253-9837

21-1601/O6

49

2023,49(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn