基于重要性评分的多级随机森林网络语音情感识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-9331.2019.03.011

基于重要性评分的多级随机森林网络语音情感识别

引用
在源数据不充分或不平衡的情况下,深度学习方法在小样本集上难以取得令人满意的语音情感识别效果.因此,本研究构造了一种三层随机森林情感识别网络,在每一层都单独剥离易于区分的情感类别,并通过重要性评分方法,为每一层网络都构造一个识别特定类别的特征集,该特征集的每一个特征都依据贡献度大小得到赋权,以确保对分类贡献越多的特征因子对结果影响越大.本研究构建的多级情感识别网络,在小样本集语音情感识别的整体识别率上,较单层随机森林网络和支持向量机分别提高了5%和7%,较流行的深度学习方法卷积神经网络提高了12%.实验结果和理论分析表明:基于重要性评分的多级随机森林网络相较于其他方法,在源数据样本量较少和部分不平衡的情况下,有更高的识别准确率,具有语音情感识别方向的实际应用意义.

随机森林、多级网络、重要性评分、特征赋权、情感差异、交叉验证

16

H107

国家自然科学基金资助项目61702052;长沙市科技计划项目KQ1703018;湖南省教育厅重点项目17A007,16A008

2019-10-25(万方平台首次上网日期,不代表论文的发表时间)

共7页

77-83

相关文献
评论
暂无封面信息
查看本期封面目录

长沙理工大学学报(自然科学版)

1672-9331

43-1444/N

16

2019,16(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn