基于深度长短期记忆网络的地铁进站客流预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16037/j.1007-869x.2019.09.009

基于深度长短期记忆网络的地铁进站客流预测

引用
提出利用多源数据(地铁刷卡数据、气候数据和节假日数据)进行数据特征构造,并采用深度长短期记忆网络(DLSTM)方法预测地铁进站客流量.以深圳北站地铁站为研究对象,选取该站3个月的地铁IC卡数据记录,前两个月的数据为训练集,后一个月的数据为测试集.介绍了数据预处理方法和DLSTM模型构建原理.试验结果表明:DLSTM模型的预测准确度随着DLSTM模型的深度增加而增高;与其它模型相比,DLSTM模型的预测精度更高.

地铁、进站客流、客流预测、深度长短期记忆网络

22

U293.13(铁路运输管理工程)

河南省交通运输科技计划项目2019G-2-2;中央高校基本科研业务费专项资金22120180241

2019-11-18(万方平台首次上网日期,不代表论文的发表时间)

共5页

41-45

相关文献
评论
暂无封面信息
查看本期封面目录

城市轨道交通研究

1007-869X

31-1749/U

22

2019,22(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn