基于样本熵和支持向量机的短期风速预测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-9140.2014.04.003

基于样本熵和支持向量机的短期风速预测模型

引用
提出一种经验模态分解、样本熵和支持向量机相结合的短期风速组合预测方法。首先利用经验模态分解将原始风速序列逐级分解成若干个规律性更强的子序列,以减小不同特征尺度序列间的相互影响,提高预测精度。接着计算各风速子序列的样本熵,将复杂度相近的序列归类形成一个新序列,以减少所需建立的预测模型的数量。然后对经 EMD-SE 处理后得到的新的风速子序列分别建立支持向量机预测模型,并采用遗传算法实现各模型参数的自动选取和寻优,最后将各序列的预测结果叠加得到风速预测结果。算例研究表明,该方法充分挖掘了风速序列的特性,能快速地对风速变化作出响应,预测的均方根误差和百分比误差分别比单纯采用支持向量机法降低了5.1%和5.4%,有效地提高了短期风速预测的准确度。

短期风速预测、经验模态分解、样本熵、支持向量机

TM614(发电、发电厂)

国家自然科学基金重大项目51190105

2015-01-20(万方平台首次上网日期,不代表论文的发表时间)

共6页

12-17

相关文献
评论
暂无封面信息
查看本期封面目录

电力科学与技术学报

1673-9140

43-1475/TM

2014,(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn