10.3969/j.issn.1673-9140.2014.04.003
基于样本熵和支持向量机的短期风速预测模型
提出一种经验模态分解、样本熵和支持向量机相结合的短期风速组合预测方法。首先利用经验模态分解将原始风速序列逐级分解成若干个规律性更强的子序列,以减小不同特征尺度序列间的相互影响,提高预测精度。接着计算各风速子序列的样本熵,将复杂度相近的序列归类形成一个新序列,以减少所需建立的预测模型的数量。然后对经 EMD-SE 处理后得到的新的风速子序列分别建立支持向量机预测模型,并采用遗传算法实现各模型参数的自动选取和寻优,最后将各序列的预测结果叠加得到风速预测结果。算例研究表明,该方法充分挖掘了风速序列的特性,能快速地对风速变化作出响应,预测的均方根误差和百分比误差分别比单纯采用支持向量机法降低了5.1%和5.4%,有效地提高了短期风速预测的准确度。
短期风速预测、经验模态分解、样本熵、支持向量机
TM614(发电、发电厂)
国家自然科学基金重大项目51190105
2015-01-20(万方平台首次上网日期,不代表论文的发表时间)
共6页
12-17