基于改进LSSVR模型的移动节点定位技术研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3979/j.issn.1673-825X.201906120226

基于改进LSSVR模型的移动节点定位技术研究

引用
针对最小二乘支持向量回归(least squares support vector regression,LSSVR)模型在移动节点定位过程中存在难以确定最优参数的不足,提出一种基于改进粒子群算法优化LSSVR模型的定位方法.通过最小二乘支持向量回归机构造节点定位的模型,自适应调整惯性权重以及学习因子来提高粒子群算法的寻优性能,并将其应用到LSSVR模型的参数优化中,避免参数选择的盲目性.根据接收信号强度指示(received signal strength indication,RS-SI)测距技术获得节点移动过程中的距离向量,将其输入LSSVR定位模型,估计出未知节点的坐标.仿真结果表明,相对于LSSVR与PSO-LSSVR算法,所提算法的定位精度分别提高了25.9%和19.7%,具有较好的定位稳定性与实时性.

移动节点、定位、最小二乘支持向量回归(LSSVR)、粒子群算法、惯性权重、学习因子

33

TP393(计算技术、计算机技术)

国家自然科学基金 61273302

2021-03-15(万方平台首次上网日期,不代表论文的发表时间)

共8页

44-51

相关文献
评论
暂无封面信息
查看本期封面目录

重庆邮电大学学报(自然科学版)

1673-825X

50-1181/N

33

2021,33(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn