结合遗忘特性的多任务多核在线学习算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3979/j.issn.1673-825X.2019.06.015

结合遗忘特性的多任务多核在线学习算法

引用
对于数据流的处理,多任务多核学习已逐渐成为在线学习算法研究的热点,它在一定程度上可提高数据流预测的准确性.多核方法尽可能使用最少的核函数得到最好的实验效果,当数据量增大、训练模型稳定时,通过阈值限定的方法对核函数进行遗忘,从而减少基本核函数的使用个数,使得计算更加简单;对于算法的优化,通过引入一个遗忘变量,从对偶的角度来进一步优化权重更新过程,这里的权重指多个任务的共有特征权重和每个任务间的特有权重,以提高算法的收敛速度.实验部分对核函数的选取进行了较为详细的分析,通过对UCI数据集和实际的机场客流量数据集进行分析,证明该本算法的合理性和高效性.

多任务学习、多核学习、在线学习、流数据

31

TP181(自动化基础理论)

国家重点研究发展计划涉密项目2016QY01W0200;国家自然科学基金61572091;重庆市产业类重点主题专项cstc2017zdcy-zdyfx0091;重庆市人工智能技术创新重大主题专项重点研发项目cstc2017rgzn-zdyfx0022

2020-01-11(万方平台首次上网日期,不代表论文的发表时间)

共12页

849-860

相关文献
评论
暂无封面信息
查看本期封面目录

重庆邮电大学学报(自然科学版)

1673-825X

50-1181/N

31

2019,31(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn