基于模糊度量视觉特征的非局部均值去噪
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3979/j.issn.1673-825X.2018.03.016

基于模糊度量视觉特征的非局部均值去噪

引用
针对非局部均值(non local mean,NLM)相似性度量不够准确的问题,提出一种基于模糊度量的视觉特征相似度的改进非局部均值图像去噪算法.利用模糊度量理论构建视觉特征度量相似性函数作为衡量图像像素点相似性;将平滑核函数代替高斯加权核函数,提高运算速度和避免滤波参数的设置;利用构建视觉特征相似性度量生成的平滑核函数,对图像进行去噪.由于改进方法考虑图像视觉结构特征,更加完善了非局部均值结构相似的特点.在高斯噪声和椒盐噪声下,用峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity index,SSIM)评价指标分别对比分析提出方法与几种优秀的改进NLM方法的降噪性能.实验结果表明,改进的新方法在去噪性能方面得到较高的提升,同时降低了相似度计算的复杂度和减少了参数设置问题.

非局部均值、图像去噪、视觉特征相似度、模糊度量

30

TP391(计算技术、计算机技术)

国家自然科学基金61775030,61571096;四川省教育厅科学研究项目15ZB0425;中国科学院光束控制重点实验室基金 2017LBC003 The National Natural Science Foundation of China61775030,61571096;The Sichuan Education Department Scientific Research Project15ZB0425;The Key Laboratory Found of Beam Control, Chinese Academy of Sciences2017LBC003

2018-07-11(万方平台首次上网日期,不代表论文的发表时间)

共8页

408-415

相关文献
评论
暂无封面信息
查看本期封面目录

重庆邮电大学学报(自然科学版)

1673-825X

50-1181/N

30

2018,30(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn