用于手写签名识别的演化超网络
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3979/j.issn.1673-825X.2017.03.015

用于手写签名识别的演化超网络

引用
手写签名作为易被大众所接受的生物特征身份认证方式,已成为模式识别领域一个重要研究热点.针对现有手写签名存在易模仿难鉴定的问题,提出一种结合演化超网络模型的手写签名认证方法.为了平滑噪声,构造出可读性强的笔迹特征集,采用向量化和平滑采集点的方法对手写签名样本进行预处理,从而提取出位置和方向特征属性,采用演化超网络模型对签名进行学习和鉴定.为验证该方法的有效性,对20个签名用户分别采集了40个真实签名和20个伪造签名数据进行实验.实验结果表明,该方法对用户签名的误拒率(false rejection rate,FRR)为4.75%,误纳率(false acceptance rate,FAR)为3.75%,识别率(verification accuracy,VA)为95.75%.同时和其他传统的识别算法相比,具有更高的识别率.

签名认证、笔迹特征集、向量化、演化超网络

30

TP391(计算技术、计算机技术)

重庆市基础与前沿研究计划项目cstc2014jcyjA40001,cstc2014jcyjA40022;重庆教委科学技术研究项目自然科学类KJ1400436;重庆市研究生科研创新项目 CYS14150 The Fundamental and Frontier Research Project of Chongqingcstc2014jcyjA40001,cstc2014jcyjA40022;The Science Foundation Project of CQ Education CommissionKJ1400436;The Postgraduate Research and Innovation Project of ChongqingCYS14150

2018-07-11(万方平台首次上网日期,不代表论文的发表时间)

共9页

399-407

相关文献
评论
暂无封面信息
查看本期封面目录

重庆邮电大学学报(自然科学版)

1673-825X

50-1181/N

30

2018,30(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn