基于CA-ResNet网络与nadam优化的入侵检测算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11721/cqnuj20210418

基于CA-ResNet网络与nadam优化的入侵检测算法

引用
[目的]针对深度学习模型在网络入侵检测中进行参数训练时因梯度消失而导致深度学习模型过拟合在测试集上准确率下降的问题.提出一种结合LeakyRelu激活函数与ResNet的网络入侵检测算法,即CA-ResNet,并采用nadam优化器对模型进行优化.[方法]该模型在DNN的基础上增加了网络的层次,结合了ResNet和LeakyRelu激活函数.[结果]解决了模型训练时梯度消失的问题,保证了该模型在测试数据集上的表现,使得训练的模型的泛化能力更强,同时通过增加网络的单层维度和总层次的深度,提高了网络的特征提取能力和对尺度的适应性.[结论]使用KDD Cup99数据中的Corrected数据集对算法进行验证.实验表明,该算法与CNN和CNN-BiLSTM算法相比具有更高的准确率和F1-score,准确率能够达到95.0%,F1-score能够达到97.5,时间复杂度为线性时间复杂度.

网络安全;深度学习;入侵检测;ResNet残差网络;协同激活函数;CA-ResNet;nadam优化器

38

TP309(计算技术、计算机技术)

重庆市技术创新与应用发展重大主题专项No.cstc2019jscx-mbdxX0061.No.cstc2019jscx-zdztzx0043

2021-09-02(万方平台首次上网日期,不代表论文的发表时间)

共10页

97-106

相关文献
评论
暂无封面信息
查看本期封面目录

重庆师范大学学报(自然科学版)

1672-6693

50-1165/N

38

2021,38(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn