关于Lipschitz严格伪压缩映象的带误差的Ishikawa型迭代程序
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

关于Lipschitz严格伪压缩映象的带误差的Ishikawa型迭代程序

引用
设K是任意实Banach空间X中的闭凸子集,T ∶ K→K是Lipschitz严格伪压缩映象,在没有假设∑∞n=0αnβn<∞之下,本文证明了由xn+1=(1-αn) xn+αnTyn+un与yn=(1-βn) xn+βnTxn+vn,n∈N,生成的带误差的Ishikawa迭代序列强收敛到T的唯一不动点,并给出了更为一般的收敛率估计:若un=vn=0,n∈N,则有‖xn+1-x*‖≤(1-γn) ‖xn-x*‖≤…≤∏nj=0(1-γj) ‖x0-x*‖,其中{γn}是(0,1)中的序列,满足γn≥11+kmin(ε,η-ε) αn.所得结果改进和推广了最新的一些结果.

任意实Banach空间、Lipschitz严格伪压缩映象、带误差的Ishikawa迭代序列、收敛率估计、不动点

26

O177.91(数学分析)

国家自然科学基金10671135

2009-06-03(万方平台首次上网日期,不代表论文的发表时间)

共5页

7-11

相关文献
评论
暂无封面信息
查看本期封面目录

重庆师范大学学报(自然科学版)

1672-6693

50-1165/N

26

2009,26(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn