基于信息融合的风电机组齿轮箱轴承故障诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11835/j.issn.1000-582X.2020.08.002

基于信息融合的风电机组齿轮箱轴承故障诊断

引用
针对风电齿轮箱轴承故障问题,提出一种基于信息融合将BP神经网络与D-S证据理论相结合的风电轴承故障诊断方法.首先基于大数据,挖掘SCADA(supervisory control and data acquisition)系统中与风电齿轮箱轴承故障有关的振动、温度、电流、转矩和转速信号等故障特征;然后将各信号故障特征量作为神经网络输入,将神经网络的输出归一化作为证据理论基本概率分配值(BPA值),为解决各证据之间冲突问题,采用一种基于加权的方法来改进各条证据,以减小冲突;最后利用组合规则将各条改进的证据融合,得出最终诊断结果.研究基于某风场2 MW风电机组的实际运行数据,结果表明:随着融合信号维度的增加,最终诊断结果的准确率也逐步提高,融合多维信号的可靠性明显高于单一信号.

信息融合、BP神经网络、改进的D-S证据理论、风电齿轮箱轴承、故障诊断

43

TM315(电机)

国家重点研发计划资助项目;中央高校基本科研业务费;重庆市科委资助项目

2020-09-04(万方平台首次上网日期,不代表论文的发表时间)

共12页

11-22

相关文献
评论
暂无封面信息
查看本期封面目录

重庆大学学报

1000-582X

50-1044/N

43

2020,43(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn