基于改进人工蜂群算法和极限学习机的刀具磨损监测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11835/j.issn.1000-582X.2018.06.001

基于改进人工蜂群算法和极限学习机的刀具磨损监测

引用
为了提高机械切削加工中刀具磨损量的实时监测精度,运用极限学习机建立刀具磨损监测模型,提出一种引入虚拟蜂的改进人工蜂群算法,对极限学习机随机产生的输入层权值和隐含层阈值进行优化.采用时域分析和经验模态分解,提取铣削加工中的切削力信号 、振动信号以及声发射信号的时域特征和内禀模态能量比,从中选出对刀具磨损敏感的特征作为监测特征.利用建立的监测模型计算得到刀具磨损值,实验结果表明,优化后的极限学习机能够准确地预测刀具磨损值,且具有更简单的网络结构,同时改进后的蜂群算法也表现出了更好的寻优能力.

刀具磨损、虚拟蜂、极限学习机、特征提取

41

TH17

国家科技支撑计划资助项目2015BAF02B02

2018-07-24(万方平台首次上网日期,不代表论文的发表时间)

共8页

1-8

相关文献
评论
暂无封面信息
查看本期封面目录

重庆大学学报

1000-582X

50-1044/N

41

2018,41(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn