基于GaussNewton-NL2SOL法的前馈神经网络及应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-582X.2004.04.030

基于GaussNewton-NL2SOL法的前馈神经网络及应用

引用
目前基于高斯牛顿法及其衍生算法的前馈神经网络虽然可以达到局部二阶收敛速度,但只对小残量或零残量问题有效,对大残量问题则收敛很慢甚至不收敛.为了实时解决神经网络学习过程中可能遇到的小残量问题和大残量问题,引入NL2SOL优化算法,并与GaussNewton法相结合,构建基于GaussNewton-NL2SOL法的前馈神经网络.仿真实例表明,该神经网络较好地解决了残量问题,具有良好的收敛性和稳定性.

前馈神经网络、GaussNewton法、NL2SOL法、残量问题、收敛性、稳定性

27

TP18(自动化基础理论)

国家自然科学基金70172001

2004-06-18(万方平台首次上网日期,不代表论文的发表时间)

共4页

118-121

相关文献
评论
暂无封面信息
查看本期封面目录

重庆大学学报(自然科学版)

1000-582X

50-1044/N

27

2004,27(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn