基于DESSA-DESN和NCA的锂离子电池剩余寿命预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19799/j.cnki.2095-4239.2023.0398

基于DESSA-DESN和NCA的锂离子电池剩余寿命预测

引用
锂离子电池的剩余使用寿命(RUL)对于锂离子电池在设备中的管理、使用至关重要,为了提高RUL的预测精度,本工作提出一种基于混合差分进化-麻雀搜索算法(DESSA)优化的深度回声状态网络(DESN)和邻域成分分析法(NCA)的锂离子电池RUL预测方法.首先,对锂离子电池的容量衰减特性进行分析,对于多种能够描述电池老化状态的间接健康指标,利用NCA算法降维处理,得到4个高相关度的健康因子作为模型的输入;其次,将差分进化算法(DE)和麻雀搜索算法(SSA)相结合,将突变、交叉、筛选等操作引入SSA算法的种群更新过程中,提出混合差分进化-麻雀搜索算法(DESSA)算法,利用DESSA算法对DESN网络的参数进行寻优,建立DESSA-DESN预测模型.最后,利用NASA数据集和CALCE数据集对所提模型的有效性和泛化性能进行验证,并与SSA-DESN、GPR等现有方法进行比较,结果表明本工作提出的DESSA-DESN模型能够更加准确追踪锂离子电池的退化状态,具有更小的预测误差,对RUL预测结果的均方根误差(RSME)能够保持在1.5%以内,平均绝对误差(MAE)保持在1%以下.

锂离子电池、剩余使用寿命、邻域成分分析、深度回声状态网络、混合差分进化-麻雀搜索算法

12

TM912

河北省重点研发计划项目20312102D

2023-10-27(万方平台首次上网日期,不代表论文的发表时间)

共12页

3191-3202

相关文献
评论
暂无封面信息
查看本期封面目录

储能科学与技术

2095-4239

10-1076/TK

12

2023,12(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn