融合自注意力机制与门控循环单元网络的宽工况锂离子电池SOC估计
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19799/j.cnki.2095-4239.2023.0292

融合自注意力机制与门控循环单元网络的宽工况锂离子电池SOC估计

引用
准确估计宽工况条件下的锂离子电池荷电状态(SOC)对于电动汽车的运行安全性和可靠性至关重要,是电池管理系统最重要的任务之一.本工作充分利用门控循环单元(GRU)神经网络短时处理能力与注意力机制(SAM)长时序特征提取能力,提出了一种融合SAM与GRU的神经网络模型学习锂离子电池可测参数(电压、电流)与其SOC的非线性映射关系,实现了高精度的SOC估计,从而解决锂离子电池SOC的长序列相关特征难以有效表征问题.通过北京公交动态应力测试(BBDST)数据的验证表明,与传统GRU网络相比,本文提出的SAM-GRU神经网络模型对于不同放电倍率、环境温度以及放电倍率-环境温度混合工况下工作的锂离子电池均取得了更准确的SOC估计,估计精度提升分别不小于26%、25%和11%.

锂离子电池、荷电状态、自注意力机制、门控循环单元神经网络

12

TM912

国家自然科学基金52075028

2023-08-02(万方平台首次上网日期,不代表论文的发表时间)

共9页

2229-2237

相关文献
评论
暂无封面信息
查看本期封面目录

储能科学与技术

2095-4239

10-1076/TK

12

2023,12(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn