10.19799/j.cnki.2095-4239.2022.0403
基于GAPSO-FNN神经网络的锂离子电池传感器故障诊断
新能源汽车的动力电池内部存在多种传感器用来进行电池系统的安全监测,而传感器故障会导致荷电状态等指标出现误差,严重时会触发电池热失控的风险.为了有效准确地进行电池传感器故障诊断,提出基于遗传算法优化粒子群算法(genetic algorithm optimized particle swarm optimization,GAPSO)和模糊神经网络(fuzzy neural network,FNN)的锂离子电池传感器故障诊断方法对锂离子电池的传感器进行故障诊断,该方法使识别故障准确率迅速提升.本工作首先通过硬件平台和Matlab/Simulink环境相结合的方式获取电池传感器故障的数据,然后对故障数据进行预处理及特征提取,最后采用GAPSO-FNN算法对电池传感器进行故障诊断,并与传统神经网络和模糊神经网络方法的结果进行对比.仿真结果表明,基于GAPSO-FNN的锂离子电池传感器故障诊断方法相比于传统的神经网络方法测量准确率提升了 25%,相比于模糊神经网络准确率提升了 10%,故障诊断准确率能够达到95%,在减少故障诊断所需信息量的同时,有效地提升了故障诊断的准确率.
锂离子电池、传感器故障诊断、GAPSO-FNN、健康监测、热失控风险
12
TM912
国家自然科学基金51775042
2023-04-07(万方平台首次上网日期,不代表论文的发表时间)
共7页
602-608