基于混合模型及LSTM的锂电池SOH与剩余寿命预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19799/j.cnki.2095-4239.2020.0382

基于混合模型及LSTM的锂电池SOH与剩余寿命预测

引用
预测电池健康状态(state of health,SOH)的传统方法,一般以历史数据为依据,既难以预测电池实时状态,也无法估计锂电池剩余使用寿命.针对实时预测电池SOH的问题,文章依据采集的大量实车电池数据,结合机器学习与安时积分法对其进行建模预测,处理特征并训练数据.基于模型测试结果,文章提出融合LightGBM与CatBoost算法的实时SOH混合预测模型.通过两辆实车为载体进行混合模型的验证,所测算的实时SOH预测绝对平均误差为0.009.针对电池剩余使用寿命的问题,研究的目标为获取SOH衰减曲线.因此建立长短记忆(LSTM)神经网络模型预测电池SOH的未来衰减曲线,以固定时间间隔内的SOH差值为特征,减小差值波动,保证数据近似具有相同分布规律.通过对某原始设备制造商提供的实时监视数据集的验证,得出未来衰减曲线预测的绝对平均误差为0.021.总体结果表明:文章研究的锂电池实时SOH预测模型与剩余寿命预测模型,预测精度较高,电池使用方可以更好掌握锂电池的实时状态,为相关决策提供依据.

机器学习、SOH、混合模型、LSTM

10

TM912.9

2021-03-11(万方平台首次上网日期,不代表论文的发表时间)

共6页

689-694

相关文献
评论
暂无封面信息
查看本期封面目录

储能科学与技术

2095-4239

10-1076/TK

10

2021,10(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn