大华滑坡位移预测模型研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11988/ckyyb.20210462

大华滑坡位移预测模型研究

引用
针对传统滑坡位移预测过程中的不足,提出了一种基于最小二乘支持向量机(LSSVM)的滑坡位移预测方法.以某流域大华滑坡为例,基于时序分析和集合经验模态分解法(EEMD)将原始序列重构为趋势项和波动项,趋势项位移受滑坡内部因素影响,采用最小二乘法与多项式方程进行拟合预测;波动项位移受库水位、降雨、地下水位等周期性因素影响,结合灰色关联度法和核主成分分析法(KPCA)对输入因子进行筛选与降维,并用粒子群算法-最小二乘支持向量机耦合模型(PSO-LSSVM)进行建模预测.最后将趋势项与周期项预测位移相加得到累计预测位移,并对模型预测精度进行定量分析.结果表明,建立的EEMD-KPCA-PSO-LSSVM组合模型预测效果良好,较传统BP神经网络、LSSVM等单一模型有着更高的预测精度,可为同类型滑坡位移预测提供新的思路.

水动力型滑坡、位移预测、集合经验模态分解、核主成分分析、最小二乘支持向量机

39

P642(水文地质学与工程地质学)

国家重点研发计划;江苏省六大人才高峰项目;江苏高校青蓝工程项目

2022-10-09(万方平台首次上网日期,不代表论文的发表时间)

共9页

56-64

相关文献
评论
暂无封面信息
查看本期封面目录

长江科学院院报

1001-5485

42-1171/TV

39

2022,39(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn