基于深度学习的黑臭水体遥感信息提取模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11988/ckyyb.20210045

基于深度学习的黑臭水体遥感信息提取模型

引用
黑臭水体分布广泛,严重损害人民的居住环境和城市整体美观形象.以河北省廊坊市为研究区,利用高分二号(GF-2)多光谱数据和实测数据,使用PSPNet(Pyramid Scene Parsing Network)和U-Net模型对黑臭水体遥感信息提取进行对比实验研究.基于可见光波段(RGB)及近红外波段(NIR)计算归一化差异植被指数(NDVI)和归一化差异黑臭水体指数(NDBWI),针对细小形状的黑臭水体普遍存在的漏检问题,引入注意力机制模块对模型进行优化改进,构建改进型深度学习黑臭水体遥感信息提取模型.结果表明:输入RGB+NIR+NDVI+NDBW六通道组合遥感影像并引入注意力机制的U-Net网络模型对黑臭水体的提取结果最佳,其精度评价指标F1-srore、MIoU、Recall分别达到了0.8645、0.8681、0.8359.

黑臭水体、深度学习模型、PSPNet网络模型、U-Net网络模型、GF-2卫星、遥感信息、注意力机制

39

P237;X824;S157(摄影测量学与测绘遥感)

民用航天十三五预研技术项目;福建省自然科学基金项目

2022-04-25(万方平台首次上网日期,不代表论文的发表时间)

共7页

156-162

相关文献
评论
暂无封面信息
查看本期封面目录

长江科学院院报

1001-5485

42-1171/TV

39

2022,39(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn