基于互信息与神经网络的天山西部山区 融雪径流中长期水文预报
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11988/ckyyb.20170046

基于互信息与神经网络的天山西部山区 融雪径流中长期水文预报

引用
为提高天山西部山区融雪径流的预报精度,更好地指导所在区域的工农业生产发展,针对影响预报精度的关键问题(预报因子的选择),基于互信息法、相关系数法、主成分分析法对研究区的预报因子进行优选,采用RBF神经网络以及组合小波BP神经网络模型进行径流预报研究,并进行不同方案的比较.结果表明:①互信息法优选出的预报因子作为模型输入可以提高预报精度;②采用不同优选预报因子作为RBF神经网络以及组合小波BP神经网络模型的输入变量,结果表明RBF神经网络模型的预测精度要好于组合小波BP神经网络模型;③以相对误差作为评价模型精确度的标准,预测效果最好的是基于互信息方法挑选出的预报因子作为RBF神经模型输入数据的模型预测结果.

水文中长期预报、互信息法、相关系数、主成分、神经网络

35

P338(水文科学(水界物理学))

国家自然科学基金项目51469034,51209181;新疆自治区地方公派出国留学成组配套项目XJDF201307;新疆水文学及水资源重点学科基金项目xjswszyzdxk20101202

2018-08-29(万方平台首次上网日期,不代表论文的发表时间)

共5页

17-21

相关文献
评论
暂无封面信息
查看本期封面目录

长江科学院院报

1001-5485

42-1171/TV

35

2018,35(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn