RBF神经网络模型在砂土液化判别中的应用研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-5485.2013.05.017

RBF神经网络模型在砂土液化判别中的应用研究

引用
以时松孝次收集的砂土液化数据为研究对象,选取黏粒含量ρc、相对密实度Dr、临界深度ds、竖向有效应力σ’、地下水位dw、地震震级M、最大地面水平加速度αmax和标准贯入次数SPT-N等8个砂土液化的主要影响因素作为RBF神经网络的输入参数,利用MATLAB7.0中的神经网络工具箱,对部分样本数据进行训练和测试.并利用建立的RBF神经网络模型分析了各因素对砂土液化的影响规律.结果表明:砂土液化判别指标随αmax的增加而增大,随SPT-N和dw的增加而减小.研究成果表明,建立的RBF网络模型完全满足砂土液化判别的精度要求,能够精确模拟输入和输出之间复杂的非线性映射关系,具有较高的预测精度,具有重要的工程应用价值.

砂土液化、评价指标、RBF神经网络、液化等级

30

TU478(土力学、地基基础工程)

2013-07-12(万方平台首次上网日期,不代表论文的发表时间)

共6页

76-81

相关文献
评论
暂无封面信息
查看本期封面目录

长江科学院院报

1001-5485

42-1171/TV

30

2013,30(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn