基于集成学习的油水两相ECT系统流型识别研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16489/j.issn.1004-1338.2020.01.008

基于集成学习的油水两相ECT系统流型识别研究

引用
针对传统的电容层析成像(ECT)流型识别方法识别率低的问题,提出一种基于集成学习理论的ECT流型识别方法.将ECT系统获得的大量流型数据进行归一化处理,并将样本数据的60%随机分配给训练数据,40%作为测试数据.在现有随机森林分类器的基础上进行改进,通过对单一流型进行识别,获取各类流型的识别标签,并通过组合策略的原则将多个单类标签结果进行重组,最终获取多种流型分类结果.对8种典型流型的仿真实验结果表明,该方法继承了传统的随机森林的分类特点.在5~40 dB信噪比的情况下,识别率有明显的提升,最高可达99.93%,表明了这种方法抗噪声干扰能力强,是一种适用于工业检测的方法.

油水两相、电容层析成像、流型识别、集成学习、随机森林、Bagging算法

44

P631.84

国家自然科学基金项目;东北石油大学研究生创新科研项目

2020-06-28(万方平台首次上网日期,不代表论文的发表时间)

共5页

38-42

相关文献
评论
暂无封面信息
查看本期封面目录

测井技术

1004-1338

61-1223/TE

44

2020,44(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn