基于BP神经网络技术的储层流动单元研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1004-1338.2012.04.020

基于BP神经网络技术的储层流动单元研究

引用
黄珏油田方4阜一段储层属低孔隙度、低渗透率储层,储层特性较为复杂,在进行储层参数的求取时存在较大误差.结合取心物性资料、测井资料,选用流动带指数IFZ划分方法将取心井储层流动单元划分成Ⅰ、Ⅱ、Ⅲ类,并建立流动单元的识别和划分标准.在此基础上,利用BP神经网络技术对取心井储层流动单元进行学习训练,与测井曲线建立其相关的学习和预测模型,对非取心段储层流动单元进行预测,明显提高了测井解释精度,为储层精细评价提供一种较有效的研究方法.

测井解释、流动单元、低孔隙度、低渗透率、流动带指数、BP神经网络、黄珏油田

36

P631.84

2012-11-26(万方平台首次上网日期,不代表论文的发表时间)

共6页

421-425,430

相关文献
评论
暂无封面信息
查看本期封面目录

测井技术

1004-1338

61-1223/TE

36

2012,36(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn