一种混合改进的鹰栖息优化算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-1409.2022.04.013

一种混合改进的鹰栖息优化算法

引用
鹰栖息优化(eagle perching optimization,EPO)算法模拟了鹰在大自然中栖息的生物特性,在全局范围内随机采样,利用 目标函数找到采样点中的最优解,之后将搜索范围缩小,在这个最优解附近进行二次采样,迭代这一过程,执行全局搜索到局部搜索的转变.该算法原理简单、易于实现,是一种收敛速度较快的新型群智能算法,但在解决高维问题时算法收敛精度低、易陷入局部最优.基于自适应调优和混合算法的思路,提出了一种混合改进的鹰栖息优化(hybrid improved eagle perching optimization,HIEPO)算法:一方面引入成功率作为反馈参数自适应调整算法的收缩变量,改变了原有定值和线性递减设置,更好地实现全局搜索和局部搜索之间的转变;另一方面,结合粒子群(particle swarm optimization,PSO)算法收敛速度快,全局搜索能力强的优点,将引入成功率的EPO算法与PSO算法串行,提高收敛精度且避免了局部最优.单峰函数(f1~f4)、多峰函数(f5~f8)和定维多峰函数(f9~f12)这12个标准测试函数求解得到的平均值、标准差以及拉伸/压缩弹簧设计和压力容器设计2个工程约束优化问题的求解结果表明,改进后的HIEPO算法在收敛精度和避免局部最优方面均有一定优势.

EPO算法、PSO算法、混合优化、自适应

19

TP18(自动化基础理论)

国家自然科学基金61673006

2022-06-15(万方平台首次上网日期,不代表论文的发表时间)

共8页

111-118

相关文献
评论
暂无封面信息
查看本期封面目录

长江大学学报(自科版)

1673-1409

42-1741/N

19

2022,19(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn