ELMD联合粒子群优化小波阈值的语音去噪研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-1409.2018.01.007

ELMD联合粒子群优化小波阈值的语音去噪研究

引用
语音信号是一种非稳态的随机信号,而传统的时频分析法缺乏对这类信号进行最稀疏表示的能力,为此提出了一种完备的局部均值分解(Ensemble Local Mean Decomposition,ELMD)联合粒子群优化小波阚值语音消噪分析法:在对原始信号LMD(局部均值分解,Local Mean Decomposition)分解基础上加入高斯白噪声辅助分析的自适应分析法,以减轻分解后的产生模态混叠现象;对于分解后的分量中残留的噪声使用粒子群优化算法获得最优小波阈值滤除.对实际采集语音信号进行Matlab仿真的处理分析结果显示,该算法在抑制语音中的背景噪声有着良好的效果,且有效降低了对语音有效信息的损伤.

语音信号、模态混叠、高斯白噪声、完备的局部均值分解、粒子群优化算法、小波阈值

15

TN912.3

国家自然科学基金项目61272147;湖北省教育厅项目B2015446;长江大学青年基金项目2016cqn10

2018-05-09(万方平台首次上网日期,不代表论文的发表时间)

共6页

33-38

相关文献
评论
暂无封面信息
查看本期封面目录

长江大学学报(自科版)

1673-1409

42-1741/N

15

2018,15(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn