基于蚁群优化的选择性集成数据流分类方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于蚁群优化的选择性集成数据流分类方法

引用
基于集成学习的数据流分类问题已成为当前研究热点之一,而集成学习存在集成规模大、训练时间长、时空复杂度高等不足,为此提出了一种基于蚁群优化的选择性集成数据流分类方法,用蚁群优化算法挑选出优秀的基分类器来构建集成分类模型.该方法首先对所有基分类器采用交叉验证计算分类精度,同时采用Gower相似系数求出基分类器之间的差异性,然后把分类精度和分类器差异性作为分类器挑选标准,从全部基分类器中选出一部分来构建集成模型,最终挑选的基分类器不仅具有良好的分类精度,同时保持一定差异性.在标准仿真数据集上对构建的集成分类模型进行仿真试验,结果表明,该方法与传统集成方法相比在准确率和稳定性方面均有显著提高.

数据流分类、概念漂移、选择性集成、蚁群优化算法、差异性

14

TP391(计算技术、计算机技术)

国家自然科学基金项目61300170;安徽省自然科学基金项目1608085MF147;安徽省高校省级优秀人才重点项目2013SQRL034ZD

2017-05-24(万方平台首次上网日期,不代表论文的发表时间)

共7页

37-43

相关文献
评论
暂无封面信息
查看本期封面目录

长江大学学报(自科版)

1673-1409

42-1741/N

14

2017,14(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn