基于多维特征权重的虚假评论识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于多维特征权重的虚假评论识别方法

引用
在线商品评论是消费者网购决策的重要依据,利益的驱动使得越来越多的网络虚假评论呈现在消费者面前。针对此问题,提出一种多维特征权重的在线虚假评论识别方法。首先,从网购信息有用性角度出发,在商品、评论者和评论内容3个维度中选取9个对评论属类语义贡献大的特征。然后,基于Fisher 准则,运用赋予权重的特征构建用于识别虚假评论的方法。试验结果验证了基于多维特征权重的虚假评论识别方法的有效性:多维特征权重方法的准确率、查全率和综合分类率均高于 Logistic 回归方法和自适应聚类方法。

虚假评论、特征选择、特征权重、Fisher 准则

TP391(计算技术、计算机技术)

安徽省高校省级科学研究项目TSKJ2014B10;安徽工程大学青年基金项目2013YQ30;安徽工程大学计算机应用技术重点实验室基金项目JSJKF201504。

2015-11-18(万方平台首次上网日期,不代表论文的发表时间)

共5页

34-38

相关文献
评论
相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn