贝叶斯优化模糊C均值的城市交通状态判别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-6338.2021.06.016

贝叶斯优化模糊C均值的城市交通状态判别方法

引用
准确的城市交通状态判别是实现城市智能交通诱导、管理、控制的基础和前提,对出行推荐和城市规划等具有重大的参考价值.通过分析浮动车GPS点位数据具备的位置、速度、方向等信息,可以实时获取交通参数,反映交通运行状态.针对交通状态的模糊性、不确定性等特性,以路段行驶速度和速度方差为指标,提出一种贝叶斯优化模糊C均值的聚类算法(BO-FCM).BO-FCM用贝叶斯算法对FCM算法的初始化参数进行优化,避免FCM陷入局部最优解而导致聚类无法收敛到最优结果,降低交通状态判别的准确度.以深圳市主干道的实测数据为例,进行BO-FCM城市道路交通状态判别算法的实验分析,结果表明,BO-FCM算法较其他FCM算法,鲁棒性更高,聚类结果更准确.

浮动车GPS数据、交通状态判别、模糊C均值、贝叶斯优化、高斯过程上置信界

38

P208(一般性问题)

2022-07-21(万方平台首次上网日期,不代表论文的发表时间)

共6页

653-658

相关文献
评论
暂无封面信息
查看本期封面目录

测绘科学技术学报

1673-6338

41-1385/P

38

2021,38(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn