卷积神经网络支持下的建筑物选取方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11947/j.AGCS.2023.20220216

卷积神经网络支持下的建筑物选取方法

引用
建筑物选取是地图综合的关键步骤,需要考虑目标大小、方向、形状、密度等多种上下文因子进行重要性评价与选取决策.现有方法大多考虑单一或少数几个因子,通过人工设置选取规则与参数,导致选取模型适应性不强.本文构建一种数据驱动的图卷积神经网络选取方法,该方法利用Delaunay三角网将建筑物目标组织为图结构,节点表示建筑物中心点,连接边体现建筑物之间的邻近关系,并计算建筑物的大小、方向、形状、密度特征作为对应节点的描述特征;然后叠加多个图傅里叶卷积运算构建图学习模型,并采用半监督学习方式训练模型,使之具备决策单个建筑物保留与否的能力.试验表明,本文方法能从少量的标注样本中有效地学习建筑物选取知识,在保留重要个体目标的同时也能较好地保持原有空间分布密度关系,克服传统方法在规则定义与参数设置方面的难题且不依赖于大量人工标注,为建筑物综合选取的智能化实施提供潜在的技术途径.

地图综合、建筑物选取、图卷积神经网络、半监督学习

52

P283(地图制图学(地图学))

2023-11-01(万方平台首次上网日期,不代表论文的发表时间)

共10页

1574-1583

相关文献
评论
暂无封面信息
查看本期封面目录

测绘学报

1001-1595

11-2089/P

52

2023,52(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn