改进U-Net的遥感图像语义分割方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11947/j.AGCS.2023.20210684

改进U-Net的遥感图像语义分割方法

引用
利用深度神经网络进行遥感影像语义分割是遥感智能解译的一个重要内容,在城市规划、灾害评估及农业生产等领域具有十分重要的作用.高分辨率遥感影像具有背景复杂、尺度多样及形状不规则等特点,使用自然场景语义分割方法处理遥感图像往往存在分割精度低的问题.针对上述情况,本文在 U-Net模型基础上,提出了一种多尺度跳跃连接方法来融合不同层次的语义特征,获取准确的分割边界与位置信息;引入注意力机制和金字塔池化解决复杂背景下的精细分割问题.为了验证本文方法的有效性,在WHDLD和 LandCover.ai数据集上进行试验,并与主流语义分割方法进行对比.试验结果表明,本文方法的mIoU分别达到 74.28%和 82.04%,F1 均值达到 84.47%和 89.76%,均优于其他对比方法;相比于U-Net的分割结果,IoU在建筑物、道路等占比较少的类别上提升明显,且优于其他对比方法.

遥感语义分割、U-Net、注意力机制、多尺度跳跃连接、金字塔池化

52

P237(摄影测量学与测绘遥感)

2023-07-25(万方平台首次上网日期,不代表论文的发表时间)

共10页

980-989

相关文献
评论
暂无封面信息
查看本期封面目录

测绘学报

1001-1595

11-2089/P

52

2023,52(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn