基于深度学习的滑坡位移时空预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于深度学习的滑坡位移时空预测

引用
滑坡变形监测数据是认识滑坡变形演化规律的直接依据,对该数据深度挖掘是实现滑坡灾害预警预报的有力保障.现有的滑坡位移预测模型多局限于单个监测点的时序预测,且未考虑监测点间的空间相关性.针对上述问题,本文提出了一种基于深度学习的滑坡位移时空预测模型:首先,构建表达所有点间空间相关性的加权邻接矩阵;其次,引入外界影响因素加强属性特征矩阵,以构建图结构数据;最后,采用集合图卷积网络(GCN)和门控循环单元(GRU)的深度学习模型,并通过多组试验寻找最优超参数,实现滑坡位移的时空预测.本文模型结果的均方根误差为4.429 mm,与对比模型相比至少降低了47.3%.而消融试验结果也显示,引入外界影响因素的属性增强可进一步提高模型的预测性能,均方根误差相对于未属性增强结果减少了28.4%.结果表明,该方法可用于滑坡位移或其他地质灾害中同样具有时空关联属性的观测量的时空预测.

滑坡、图卷积网络、时序预测、门控循环单元、空间相关性

51

P227(大地测量学)

国家自然科学基金;国家自然科学基金;次青藏高原综合科学考察研究;国家重点实验室开放基金

2022-11-10(万方平台首次上网日期,不代表论文的发表时间)

共11页

2160-2170

相关文献
评论
暂无封面信息
查看本期封面目录

测绘学报

1001-1595

11-2089/P

51

2022,51(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn