无监督密集匹配特征提取网络性能分析
随着人工智能的发展,基于深度学习的有监督密集匹配方法在虚拟、室内及驾驶等近景数据集上取得了不错的表现.针对航空影像密集匹配标签数据获取困难的问题,本文在无监督密集匹配框架下,借鉴多个有监督网络结构,分别在航空影像数据集和作为参照的近景数据集上测试了匹配精度,实现了网络结构模块与精度关系的定性分析,为进一步探索深度学习在测绘领域的实用化提供了重要的参考.试验在相同损失函数条件下,分别采用DispNetS、DispNetC、ResNet、GCNet、PSMNetB及PSMNetS网络结构进行测试.经分析,得出如下结论:①测试的网络结构中,PSMNetS在航空影像数据集和近景数据集上表现稳定,且精度最高,训练整体耗时少,具有实用化的潜力;②在监督方法中效果更好的网络结构在无监督方法中效果不一定更好,其精度不仅取决于网络自身的匹配能力,同时也依赖于网络与损失函数的兼容性;③孪生网络模块、相关信息融合模块、金字塔池化模块和堆叠沙漏模块与无监督损失函数兼容性良好,可提升网络精度,而iResNet的图像重构迭代精化模块与重构损失函数重复约束,会产生"负优化"的作用.
密集匹配、深度学习、无监督、特征提取、航空影像
51
P237(摄影测量学与测绘遥感)
国家自然科学基金41601507
2022-04-18(万方平台首次上网日期,不代表论文的发表时间)
共11页
426-436