卫星钟差预报的T-S模糊神经网络法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

卫星钟差预报的T-S模糊神经网络法

引用
结合钟差数据的特点,提出了一种基于变化率的T-S模糊神经网络(TSFNN)钟差预报模型.首先计算相邻历元间钟差的变化率值并对其进行建模;然后利用TSFNN模型预报钟差变化率值,再将预报的变化率值还原,得到钟差预报值;最后,通过算例将本文所建模型与IGU-P产品、二次多项式模型(QP)及灰色模型(GM(1,1))进行试验对比.结果表明:在使用变化率方法后,TSFNN模型预报的精度和稳定性分别提高了69.8%和76.3%,而且与IGU-P钟差产品相比,预报的精度高出约10倍,同时模型预报的效果优于两种常用模型.因此,该模型可以实现卫星钟差较高精度的预报.

卫星钟差、T-S模糊神经网络、变化率、预报

49

P2287(大地测量学)

国家自然科学基金41574010;41604013;41904039

2020-06-04(万方平台首次上网日期,不代表论文的发表时间)

共9页

580-588

相关文献
评论
暂无封面信息
查看本期封面目录

测绘学报

1001-1595

11-2089/P

49

2020,49(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn