高分辨率遥感影像语义分割的半监督全卷积网络法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

高分辨率遥感影像语义分割的半监督全卷积网络法

引用
在遥感领域,利用大量的标签影像数据来监督训练全卷积网络,实现影像语义分割的方法会导致标签绘制成本昂贵,而少量标签数据的使用会导致网络性能下降.针对这一问题,本文提出了一种基于半监督全卷积网络的高分辨率遥感影像语义分割方法.通过采用一种集成预测技术,同时优化有标签样本上的标准监督分类损失及无标签数据上的非监督一致性损失,来训练端到端的语义分割网络.为验证方法的有效性,分别使用ISPRS提供的德国Vaihingen地区无人机影像数据集及国产高分一号卫星影像数据进行试验.试验结果表明,与传统方法相比,无标签数据的引入可有效提升语义分割网络的分类精度并可有效降低有标签数据过少对网络学习性能的影响.

遥感影像、语义分割、半监督、全卷积网络

49

P231(摄影测量学与测绘遥感)

国家自然科学基金;国家重点研发项目;湖湘青年英才计划;湖南省国土厅国土资源科研项目;湖南省教育厅创新平台开放基金项目

2020-04-26(万方平台首次上网日期,不代表论文的发表时间)

共10页

499-508

相关文献
评论
暂无封面信息
查看本期封面目录

测绘学报

1001-1595

11-2089/P

49

2020,49(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn