北斗监测滑坡及其梯度增强多元回归位移预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

北斗监测滑坡及其梯度增强多元回归位移预测

引用
山体滑坡位移量预测精度主要受预测模型和参量的影响,而基于回归模型和灰度预测模型的传统滑坡预测模型主要存在模型预测结构单调、引入的预测影响参量不全面、长期性预测精度低等问题,因此,本文基于北斗数据提出了一种基于梯度增强多元回归算法的滑坡预测方法.梯度增强多元回归模型在考虑多重因素的前提下,使用如降水量、土壤湿度、地形参数等滑坡主影响因子作为回归模型参量,同时结合梯度增强方法,可以增强预测模型的有效结构,提升数据的使用率,进而提高长、短期的滑坡位移量预测精度.最后以西宁市南山寺滑坡带为例,考虑降水、地面沉降、地形地貌等诱发滑坡的关键因素,分别基于梯度增强多元回归模型、贝叶斯岭回归模型、弹性网络回归模型及支持向量机回归模型进行试验.结果表明,梯度增强多元回归模型的方差(EV)结果为0.99 mm2,均方差(MSE)结果为0.04 mm,平均绝对误差(MAE)结果为0.15 mm,且利用梯度增强多元回归模型对2020年12月的表面位移量进行预测,发现相对误差区间为(-0.8%,0.8%],预测精度最高.因此,相对而言,梯度增强多元回归预测模型精度更优、效率更高,更能准确反映滑坡表面位移量的变化状态,精确地对滑坡体进行全天候监控、预警,保障滑坡体周边环境的安全.

滑坡位移、北斗监测、预测、梯度增强多元回归模型

P237(摄影测量学与测绘遥感)

江西省重点研发计划;无锡市科技发展资金项目

2022-11-10(万方平台首次上网日期,不代表论文的发表时间)

共6页

7-12

相关文献
评论
暂无封面信息
查看本期封面目录

测绘通报

0494-0911

11-2246/P

2022,(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn