基于ICEEMDAN的多滤波算法在超高层动态变形监测中的应用
针对监测数据中存在多路径误差和随机噪声的问题,本文提出了一种基于改进的带有自适应噪声的完备集合经验模式分解(ICEEMDAN)、小波包分解(WP),以及递归最小二乘算法(RLS)的联合滤波算法(IWPR).该算法首先对原始信号进行ICEEMDAN分解,得到一系列本征模态函数(IMF)分量;然后基于标准化模量的累积均值将IMF划分为高频IMF和低频IMF;最后考虑相关系数,利用WP和RLS分别对高频IMF、低频IMF进行去噪,重构两者降噪信号,获得动态位移响应.结果表明:相对于单一算法EMD、CEEMDAN、ICEEMDAN等,IWPR算法能够更有效地消除多路径误差和随机噪声,从而提高超高层GNSS RTK监测数据的精度.
GNSS RTK、超高层结构、动态变形监测、多滤波、降噪
P258(专业测绘)
国家自然科学基金51578370
2022-04-08(万方平台首次上网日期,不代表论文的发表时间)
共5页
152-156