优化短期余水位组合预测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

优化短期余水位组合预测模型

引用
针对现有非稳定非线性余水位预测模型较少和精度较低的问题,本文研究基于MEEMD算法与遗传优化BP神经网络的余水位组合预测模型.利用夏威夷岛4个长期验潮站获取的余水位时序数据,首先采用遗传算法MEEMD对余水位时序数据进行处理分析,得到较为稳定的余水位IMF分量;然后将经过遗传算法优化后分解的较为稳定的各个IMF分量作为BP神经网络预测模型的输入变量,分别建立12、24、48 h短期余水位的MEEMD遗传算法优化BP神经网络预测模型.通过与非优化BP神经网络预测模型结果进行对比分析,结果表明,优化前后均方根误差的偏差最高达2.03 cm,验证了预测24 h内的短期余水位仍保持其相关特性.该组合预测模型对于分析余水位变化规律和潮汐预报的精度、水位改正等均有重要意义.

总平均经验模态分解;遗传算法;余水位;BP神经网络

P208(一般性问题)

国家重点研发计划;海岸带地理环境监测国家测绘地理信息局重点实验室开放基金;江苏高校优势学科建设工程资助项目

2022-04-08(万方平台首次上网日期,不代表论文的发表时间)

共5页

96-100

相关文献
评论
暂无封面信息
查看本期封面目录

测绘通报

0494-0911

11-2246/P

2022,(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn