基于随机森林特征优选的冬小麦分类方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于随机森林特征优选的冬小麦分类方法

引用
本文基于多时相Landsat 8 OLI数据,进行综合光谱、植被指数的特征提取与特征选择的方法研究.通过分析光谱与植被指数特征时序变化,提取最佳时相光谱,构建小麦提取特征;采用基于重要性与Pearson相关性的随机森林特征选择算法优选特征.结果表明:利用优选特征分类时,总体精度为89.78%,小麦分类精度为98.33%;与优选前特征的分类结果相比,精度分别提高了2.96%、2.55%;基于重要性与Pearson相关性的随机森林特征选择提高了分类精度和分类器工作效率.

特征选择、随机森林、Pearson相关性、冬小麦

P237(摄影测量学与测绘遥感)

国家重点研发计划2016YFC0803103

2022-04-08(万方平台首次上网日期,不代表论文的发表时间)

共6页

70-75

相关文献
评论
暂无封面信息
查看本期封面目录

测绘通报

0494-0911

11-2246/P

2022,(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn