基于CNN模型迁移的OLI影像光伏电池板场景识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于CNN模型迁移的OLI影像光伏电池板场景识别

引用
获取光伏电池板的空间分布及动态变化信息对于国土调查、资源环境监测和能源结构评估具有重要意义,然而,传统的光伏电池板的识别依赖于人工设计的中低层次特征,无法克服对象光谱不确定性、空间结构类型复杂等难题,算法普遍存在稳健性不强、效率不高等问题.目前,基于场景单元从遥感影像中提取空间信息,多数算法仅建立在少数标准数据集上,未考虑实际应用中遥感图像质量、空间分辨率等因素对图像场景深度特征表达的影响,制约了遥感技术在城市结构、经济社会知识挖掘方面的深入应用.针对以上情况,本文基于卷积神经网络(CNN)采用迁移学习和模型微调的策略,在中等分辨率的Landsat影像上进行光伏电池板场景识别.结果表明,本文方法能够提取电站场景的多层次特征,在形态结构复杂的电站场景中取得了较好的识别效果.

迁移学习;卷积神经网络;光伏电池板;中等分辨率遥感影像;场景尺度

P237(摄影测量学与测绘遥感)

江苏省地质矿产勘查局科研项目2020KY11

2022-03-18(万方平台首次上网日期,不代表论文的发表时间)

共5页

5-9

相关文献
评论
暂无封面信息
查看本期封面目录

测绘通报

0494-0911

11-2246/P

2022,(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn