基于LiDAR点云的建筑物分割深度学习模型研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于LiDAR点云的建筑物分割深度学习模型研究

引用
本文针对深度神经网络算法应用于机载激光点云进行大规模建筑物提取的问题,分别选取PointNet++和PointCNN两个网络模型进行了改进和对比.对于PointCNN,通过参数调整,使其更适合大场景信息提取.对于PointNet++,为了增加更多特征,加快大场景下网络模型的训练效率,在网络体系结构中添加了一种新的特征提取层——K-means层.另外,通过在测试数据集上的训练和验证发现,本文基于深度学习方法的分类较好地克服了点云的无序特性,能够更好地利用点之间的空间相关性,改进后两种模型的精度均达96%以上,在建筑物提取的时间效率和效果上优于原始模型.

PointNet++;PointCNN;激光雷达;点云;建筑;K均值

P237(摄影测量学与测绘遥感)

2022-01-06(万方平台首次上网日期,不代表论文的发表时间)

共6页

88-93

相关文献
评论
暂无封面信息
查看本期封面目录

测绘通报

0494-0911

11-2246/P

2021,(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn