基于LDCNN特征提取的多核SVM高分辨率遥感影像场景分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于LDCNN特征提取的多核SVM高分辨率遥感影像场景分类

引用
针对卷积神经网络特征维度高且单层特征不能准确表达复杂高分辨率遥感影像语义信息的问题,本文提出了一种提取低维卷积神经网络(LDCNN)深层次特征进行多核SVM分类的场景分类方法.首先将预训练的卷积神经网络改造成低维网络结构,其次提取低维网络的不同深层特征并进行不同核函数的SVM分类,找到对应的最优核函数;然后将多种最优核函数加权融合成为一个新的合成核;最后进行多核SVM分类.试验表明,本文方法不仅特征维度低,且通过多核SVM能够充分结合各层特征的优点,在两个标准数据集上均取得了99%以上的分类精度.此外,该试验还证明了本文方法具有较强的迁移学习能力.

高分辨率遥感影像;场景分类;卷积神经网络;特征提取;多核SVM

P237(摄影测量学与测绘遥感)

中科院先导A专项课题;南京信息工程大学人才启动经费

2021-09-06(万方平台首次上网日期,不代表论文的发表时间)

共8页

14-21

相关文献
评论
暂无封面信息
查看本期封面目录

测绘通报

0494-0911

11-2246/P

2021,(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn