融入超像素分割的高分辨率影像面向对象分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

融入超像素分割的高分辨率影像面向对象分类

引用
针对高分辨率遥感影像面向对象分类中容易受分割参数的影响、分类精度不稳定的问题,本文提出了一种融入超像素分割的高分辨率影像面向对象分类方法.该方法通过简单线性迭代聚类(SLIC)算法对原始影像进行聚类生成超像素影像,并在此基础上采用分形网络演化方法(FNEA)进行多尺度分割生成同质性对象,最后利用最邻近分类方法进行地物分类.试验结果表明,该方法不易受多尺度分割参数的影响,分类效果稳定,而且分类精度明显高于传统的面向对象分类方法,对于高分辨率遥感影像的广泛应用具有重要意义.

高分辨率遥感影像、简单线性迭代聚类、超像素、分形网络演化方法、多尺度分割、面向对象分类

P237(摄影测量学与测绘遥感)

2021-07-06(万方平台首次上网日期,不代表论文的发表时间)

共6页

44-49

相关文献
评论
暂无封面信息
查看本期封面目录

测绘通报

0494-0911

11-2246/P

2021,(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn