GF-6影像应用于林地与非林地识别的潜力分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

GF-6影像应用于林地与非林地识别的潜力分析

引用
为研究我国首颗携带红边波段的高分六影像(GF-6)在林地与非林地上的识别贡献,本文选择复杂林地类型的安徽省黄山市作为研究区,采用特征优选(RFE)与随机森林(RF)相结合的方法开展了林地与非林地识别潜力研究.首先根据实地调查、Google Earth影像及林地"一张图"样本数据构建了样本库;然后基于DEM、多时相光谱特征、植被指数、红边指数等特征开展分类,并比较不同模型精度及不同变量的重要度.结果表明:GF-6红边信息对林地非林地识别较为重要,引入红边信息可将总体分类精度提升2%,其他新增波段及地形特征对林地与非林地识别贡献并不明显;多时相数据的运用相比单时相数据可整体提高林地类型的分类精度2.93%~4.1%,单时相分类结果6月最好,9月次之,12月最差;特征优选可以有效减少数据输入维数(46到15),并取得最高分类精度,在不牺牲精度的同时保证了运算数据量的减少且明确了不同变量的贡献,具有较强的应用意义.

GF-6、林地与非林地、RFE、随机森林、特征重要性

P237(摄影测量学与测绘遥感)

高分辨率对地观测系统重大专项应用共性关键技术21-Y20A06-9001-17/18

2020-09-11(万方平台首次上网日期,不代表论文的发表时间)

共9页

5-12,17

相关文献
评论
暂无封面信息
查看本期封面目录

测绘通报

0494-0911

11-2246/P

2020,(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn