机器学习辅助下的概率积分法参数预计模型寻优
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13474/j.cnki.11-2246.2016.0324

机器学习辅助下的概率积分法参数预计模型寻优

引用
收集整理了多组地表移动观测站资料作为训练样本和检验样本,以工作面地质采矿条件为输入集,概率积分法预计参数为输出集,利用机器学习方法对概率积分法预测参数进行了预测。选取支持向量机、BP 神经网络和偏最小二乘法3种机器学习方法对训练样本进行训练,利用训练所得模型预测检验样本中的概率积分法预测参数,并将预测结果与观测站实测值进行对比。结果表明,利用支持向量机预测下沉系数、主要影响角正切值及水平移动系数的精度最高,其平均相对误差分别达到7.46%、4.00%、13.17%;拐点偏距及开采影响传播角利用偏最小二乘法预计精度最高,平均相对误差分别为10.83%、0.88%;总体而言支持向量机的预测精度最为稳定。

概率积分法预计参数、支持向量机、BP神经网络、偏最小二乘法、模型寻优

P258(专业测绘)

国家自然科学基金41472323;安徽省对外科技合作计划1503062020

2016-11-18(万方平台首次上网日期,不代表论文的发表时间)

共4页

35-38

相关文献
评论
暂无封面信息
查看本期封面目录

测绘通报

0494-0911

11-2246/P

2016,(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn