改进SegNet与迁移学习的遥感建筑物分割方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

改进SegNet与迁移学习的遥感建筑物分割方法

引用
针对传统SegNet应用于遥感影像建筑物分割出现分割不连续的问题,该文提出了一种改进的SegNet模型,并引入迁移学习方法,以提高遥感影像建筑物分割精度.以SegNet为基础,加入能够提取多尺度特征的改进空洞空间卷积池化金字塔模块,并引入跳层连接使分割结果更为精细.选取了 FCN、SegNet、载入ImageNet预训练权重参数的SegNet作为对比算法,对遥感建筑物分割数据集Inria Aerial Image Labeling Dataset进行训练和测试.实验结果表明,在有限的迭代次数及实验区域内,该文算法拥有更好的分割效果和更强的泛化能力.

建筑物分割、SegNet、空洞空间卷积池化金字塔、传递迁移学习

47

P237(摄影测量学与测绘遥感)

国家自然科学基金;国家自然科学基金

2022-09-27(万方平台首次上网日期,不代表论文的发表时间)

共12页

78-89

相关文献
评论
暂无封面信息
查看本期封面目录

测绘科学

1009-2307

11-4415/P

47

2022,47(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn