融合多特征深度学习的地面激光点云语义分割
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

融合多特征深度学习的地面激光点云语义分割

引用
针对当前点云语义分割研究对地面站激光点云特征利用不足、正确率较低的问题,该文提出了一种基于多尺度球形邻域特征的深度神经网络算法.该算法基于多尺度球形邻域计算的地面激光点云的粗糙度、高斯曲率,以及全方差、线性度等基于协方差的多种特征,结合XYZ坐标、RGB颜色、激光反射强度组成47维特征向量作为神经网络的输入,经过多组参数组合实验优化神经网络结构,最后通过softmax分类器输出每个点的类别.利用Semantic-3D测试集验证所提的深度神经网络模型,取得了较好的分类精度,总体正确率和平均交并比分别达到了86.6%和55.0%.实验结果表明,所提算法充分利用了地面站激光点云的特征,可有效提升语义分割的正确率.

点云、语义分割、多特征、神经网络

46

P237(摄影测量学与测绘遥感)

国家自然科学基金51678536

2021-04-26(万方平台首次上网日期,不代表论文的发表时间)

共8页

133-139,162

相关文献
评论
暂无封面信息
查看本期封面目录

测绘科学

1009-2307

11-4415/P

46

2021,46(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn